Paper reading for [NeurIPS 2020] Denoising Diffusion Probabilistic Models by Jonathan Ho, Ajay Jain and Pieter Abbeel. Paper Link is here at NeurIPS Proceedings.

好,好数学,要看不懂了

Paperlist

https://zaixiang.notion.site/Diffusion-Models-for-Deep-Generative-Learning-24ccc2e2a11e40699723b277a7ebdd64

预备知识

Gauss 分布的 KL 散度公式:

\(K L(p, q)=\log \frac{\sigma_2}{\sigma_1}+\frac{\sigma^2+\left(\mu_1-\mu_2\right)^2}{2 \sigma_2^2}-\frac{1}{2}\)

单层 VAE 原理

多层 VAE 原理与置信下界

Conclusion

  • high-quality samples using diffusion models

  • connections among diffusion models and:

Abstract

  • high-quality image synthesis using diffusion probabilistic models

  • Best results: obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics

Categories:

Updated: