Paper reading for [NeurIPS 2020] Denoising Diffusion Probabilistic Models by Jonathan Ho, Ajay Jain and Pieter Abbeel. Paper Link is here at NeurIPS Proceedings.
好,好数学,要看不懂了
Paperlist
https://zaixiang.notion.site/Diffusion-Models-for-Deep-Generative-Learning-24ccc2e2a11e40699723b277a7ebdd64
预备知识
Gauss 分布的 KL 散度公式:
\(K L(p, q)=\log \frac{\sigma_2}{\sigma_1}+\frac{\sigma^2+\left(\mu_1-\mu_2\right)^2}{2 \sigma_2^2}-\frac{1}{2}\)
单层 VAE 原理
多层 VAE 原理与置信下界
Conclusion
-
high-quality samples using diffusion models
-
connections among diffusion models and:
- variational inference for training markov chains
- denoising score matching
- annealed Langevin dynamics
- energy-based models by extension
- autoregressive models
- progressive lossy compression
Abstract
-
high-quality image synthesis using diffusion probabilistic models
-
Best results: obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics